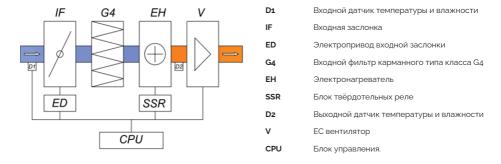


Приточная установка Aiken SV-200 Electric

Техническое описание


Описание

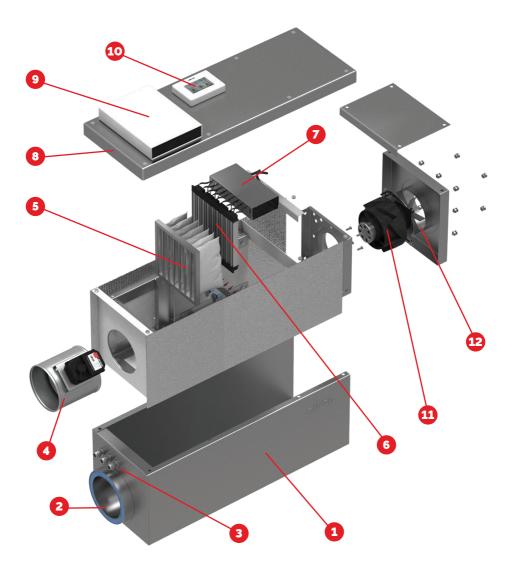
Приточная установка канального типа Aiken SV-200 Electric с электрическим калорифером. Мощность калорифера этой модели разделена на 7 ступеней и настраивается программно со штатного пульта управления. Вентустановка комплектуется керамическим калорифером (7 РТС нагревателей), воздушным клапаном с электроприводом, системой цифровой автоматики с цветным сенсорным пультом управления и всеми необходимыми датчиками. Воздушный клапан размещён внутри корпуса, что улучшает его ремонтопригодность и исключает возможность промерзания и необходимость теплоизоляции.

Функции автоматики

- Программное изменение мощности калорифера
- Плавная регулировка мощности калорифера для нагрева воздуха до заданнойтемпературы, защита от перегрева.
- Регулировка скорости вентилятора, 7 ступеней.
- Возможность управления увлажнителем воздуха с пульта вентустановки.
- Возможность управления вытяжной установкой воздуха.
- Контроль загрязнённости воздушного фильтра.
- Контроль замерзания рекуператора.
- Часы реального времени (не сбрасываются при сбое питания).
- Подключение к системе «умный дом» UJIN.
- Встроенный режим отладки.
- Удалённое управление с компьютера или смартфона/планшета.

Структурная схема

Технические характеристики


Производительность, м³/час	200		
Тип установки	Приточная канальная		
Типа нагревателя	Электрический РТС		
Количество ступеней нагрева	7		
Мощность одной ступени, Вт	300		
Максимальная потребляемая мощность, Вт	2100		
Напряжение сети, В / Максимальный ток, А	220 B / 10 A, 380 B / 3,5 A		
Максимально допустимый расход воздуха, м³/час	180		
Обслуживаемая площадь, м ²	До 75		
Габариты, (ДхШхВ) мм	770x250x250		
Параметры вентилятора	3200 об/мин, 83 Вт (EBMPapst E C)		
Уровень шума LwA (акустическая мощность)			
на всасывании	45 дБА		
на выпуске	55 дБА		
от корпуса	40 дБА		
Уровень звукового давления LpA от корпуса	30 дБА		
Вес, кг	10		

Принцип работы

Русский

- 1. Корпус приточной установки.
- 2. Входной фланец.
- 3. Адаптеры ввода электропроводки.
- 4. Входной клапан с электроприводом.
- 5. Входной фильтр.
- 6. РТС нагреватель.

- 7. Блок управления РТС нагревателей.
- 8. Крышка корпуса.
- 9. Контроллер приточной установки.
- 10. Выносной, сенсорный пульт-экран.
- 11. ЕС вентилятор.
- 12. Выпрямитель воздушного потока

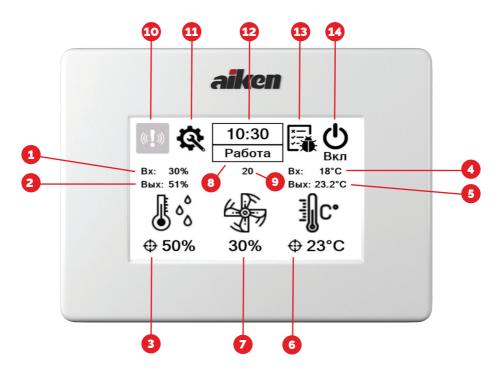
Приточный воздух поступает в приточную установку через входной фланец 2 и клапан с электроприводом 4. Затем он фильтруется на входном фильтре 5, в стандартной комплектации класса G4, и нагревается в РТС нагревателе 6.

Для уменьшения бросков тока питающей сети и ограничения потребляемой мощности, нагреватель разделён на 7 ступеней. Управление РТС нагревателем и коммутация 9 ступеней осуществляется в блоке управления 7 с помощью твердотельных реле.

Затем воздух всасывается ЕС вентилятором 11 и через выпрямитель воздушного потока 12 и выходной фланец выходит из приточной установки.

Выпрямитель воздушного потока служит для устранения закручивания воздушного потока после центробежного EC вентилятора и равномерного распределения по сечению выходного фланца.

Многофункциональный контроллер приточной установки 9 осуществляет управление приточной установкой а также, в зависимости от комплектации, управляет вытяжной установкой, увлажнителем и рекуператором.


Для настройки и диагностики вентиляционной системы в контроллере имеется режим отладки системы. Обмен данными с контроллером осуществляется через выносной, проводной, сенсорный пульт-экран 10.

Ввод проводов от контроллера внутрь приточной установки осуществляется через адаптеры ввода 3.

Контроллер приточной установки

Сенсорный пульт-дисплей

Контроллер приточной установки (ПУ) имеет собственный пульт-дисплей, через который можно управлять параметрами :

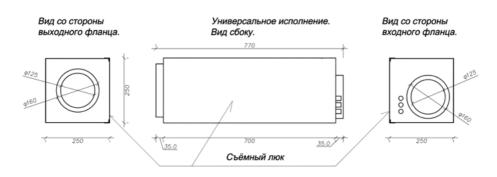


- 1. Значение влажности на входе ПУ (датчик D1);
- 2. Значение влажности на выходе ПУ (датчик D2);
- 3. Значение заданной влажности воздуха. Изменяется в подменю;
- 4. Значение температуры на входе ПУ (датчик D1);
- 5. Значение температуры на выходе ПУ (датчик D2);
- 6. Значение заданной температуры воздуха. Изменяется в подменю;
- 7. Скорость вентилятора Изменяется в подменю;
- 8. Текущий режим работы ПУ;
- 9. Системный счётчик (носит информационный характер, предназначен для сертифицированных специалистов);

- Меню ошибок. При появлении ошибки система переходит в аварийный режим, и значок подсвечивается красным. При появлении ошибки необходимо устранить причину её появления и произвести сброс конкретной ошибки путём нажатия кнопки «Сброс» в подменю данной ошибки;
- Меню конфигуратора системы (только для опытных пользователей или сертифицированных специалистов);
- 12. Текущее значение времени. Изменяется в подменю;
- 13. Меню отладки системы (только для сертифицированных специалистов);
- 14. Кнопка включения/выключения системы. Для запуска работы ПУ необходимо нажать на кнопку тем самым переведя её в состояние «Вкл».

Для корректной работы ПУ необходимо в конфигураторе выставить правильные параметры системы: наличие третьего датчика D3 после увлажнителя (при наличии в системе увлажнителя) и режим работы увлажнителя, значение желаемой влажности воздуха в канале и значение желаемой температуры воздуха в канале, ручной или автоматический режим работы вентилятора ПУ.

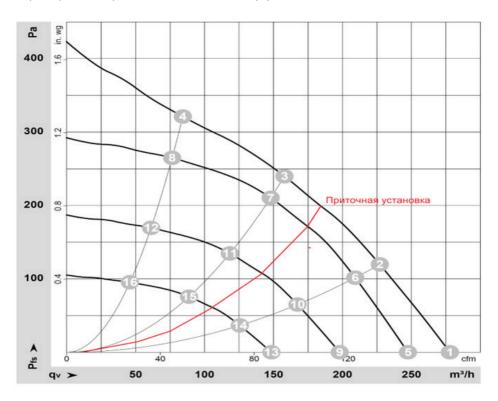
Назначение контактов многофункционального контроллера приточной установки.



RUS Русский

- 1. Контакты подключения внутреннего аккумулятора 4,8 В.
- 2. Контакты подключения внешнего питания 5,3B 5A DC.
- 3. Контакты управления нагревателем.
- Контакты контроля перегрева (Н3).
- Контакты подключения анемометра с выходными сигналами 0-10в или 4-20мА.
- 6. Контакты подключения датчика D3 на выходе увлажнителя по протоколу I2C.
- 7. Контакты подключения датчика D2 на выходе ПУ по протоколу I2C.
- 8. Контакты подключения датчика D1 на входе ПУ по протоколу I2C.
- 9. Контакты для интеграции в систему «Умный дом» через интерфейс UART.
- 10. Контакты подключения сенсорного выносного пульта-дисплея.
- 11. Контакты подключения вентилятора вытяжной установки.
- 12. Контакты подключения вентилятора приточной установки.
- 13. Контакты контроля замерзания рекуператора (Н3)...
- 14. Контакты контроля загрязнения входного фильтра (Н3)..
- 15. Контакты включения режима «КАМИН».
- 16. Контакты включения режима «Пожар» (Н3).
- 17. Контакты задания скорости вентилятора 0-7 в автоматическом режиме. Бин. код.
- 18. Контакты управления увлажнителем.
- 19. Контакты управления заслонкой рециркуляции воздуха.
- 20. Контакты управления выходной заслонкой воздуха в вытяжной установке.
- 21. Контакты управления входной заслонкой воздуха в приточной установке.

Габаритные и присоединительные размеры


Варианты исполнения

Аэродинамическая характеристика

Характеристики: производительность по воздуху 50 Hz

Данные измерений

	U	f	n	Ped	1	qv	Pts
	٧	Hz	min-1	W	A	m3/h	Pa
1	230	50	3530	83	0.75	735	0
2	230	50	3430	83	0,75	635	150
3	230	50	3200	83	0.75	455	300
4	230	50	3325	83	0.75	255	450
5	230	50	2800	49	0,45	580	0
6	230	50	2800	52	0,47	515	100
7	230	50	2800	57	0,52	400	230
8	230	50	2800	53	0,49	215	319
9	230	50	2150	24	0,25	445	0
10	230	50	2150	26	0,25	395	59
11	230	50	2150	28	0,28	310	136
12	230	50	2150	26	0,27	165	188
13	230	50	1500	10,0	0,10	310	0
14	230	50	1500	11	0,11	275	29
15	230	50	1500	12	0,12	215	66
16	230	50	1500	11	0.12	115	91

U	Напряжение питания
f	Частота
n	Скорость вращения
P_{ed}	Входная мощность
1	Потребляемый ток
qv	Расход воздуха
p_{fs}	Увеличение давлени

OOO «ССТК» 105062, г. Москва, ул. Покровка д.28, стр.1, эт 2, офис 4Б

